1. The contractor shall review the existing structural drawings and shall undertake testing to locate the position and depth of the reinforcing bars or prestressing at the locations of the concrete reinforcing, unless noted on the drawings that the bars can be cut. The testing shall be performed using a method approved by the structural engineer of record, in accordance with the American Concrete Institute (ACI) Building Code Requirements for Structural Concrete (ACI 318) and Commentary. The contractor shall submit a report to the structural engineer of record documenting the testing results. The contractor shall also provide the structural engineer of record with a copy of any testing performed and the results thereof.

2. Testing of reinforcing bars shall be performed using a method approved by the structural engineer of record, in accordance with the American Concrete Institute (ACI) Building Code Requirements for Structural Concrete (ACI 318) and Commentary. The contractor shall submit a report to the structural engineer of record documenting the testing results. The contractor shall also provide the structural engineer of record with a copy of any testing performed and the results thereof.

3. The contractor shall provide a detailed report of the testing results to the structural engineer of record, including a description of the testing method used, the results obtained, and any issues or concerns that arose during the testing. The contractor shall also provide a copy of the report to the owner and the architect/engineer.

4. The contractor shall ensure that all materials used in the construction of the project meet the specifications outlined in the contract documents. The contractor shall obtain samples of all materials to be used in the construction of the project and submit them to the structural engineer of record for testing. The contractor shall also ensure that all materials are stored and handled in accordance with the specifications outlined in the contract documents.

5. The contractor shall take all measures required to provide for free drainage of the site and protect the site from caving and unacceptable soil movement. The contractor shall also ensure that all compacted fill has a density of at least 95% of the modified proctor maximum dry density. The contractor shall also ensure that all compacted fill is tested in accordance with the American Concrete Institute (ACI) Building Code Requirements for Structural Concrete (ACI 318) and Commentary.

6. The contractor shall ensure that all excavations are supported by appropriate means. The contractor shall also ensure that all excavation work is performed in accordance with the American Concrete Institute (ACI) Building Code Requirements for Structural Concrete (ACI 318) and Commentary.

7. The contractor shall ensure that all post-installed anchors are installed in accordance with the American Concrete Institute (ACI) Building Code Requirements for Structural Concrete (ACI 318) and Commentary. The contractor shall also ensure that all post-installed anchors are properly documented and tested to ensure their integrity.

8. The contractor shall ensure that all structural work is coordinated with architectural, mechanical, electrical, plumbing, and other design professionals. The contractor shall also ensure that all structural work is performed in accordance with the American Concrete Institute (ACI) Building Code Requirements for Structural Concrete (ACI 318) and Commentary.

9. The contractor shall ensure that all existing reinforcing bars or prestressing steel in the concrete structure may conflict with other construction means and methods. The contractor shall also ensure that all existing reinforcing bars or prestressing steel are properly documented and tested to ensure their integrity.

10. The contractor shall ensure that all concrete mix design is based on laboratory trial batch method described in the ACI 301. The contractor shall also ensure that all concrete mix design is properly documented and tested to ensure its integrity.

11. The contractor shall ensure that all concrete placed is verified without expending great sums of additional money, or destroying otherwise adequate or serviceable concrete. The contractor shall also ensure that all concrete placed is properly documented and tested to ensure its integrity.

12. The contractor shall ensure that all concrete is placed using a minimum of 30 psi. The contractor shall also ensure that all concrete is placed using a minimum of 3 psi. The contractor shall also ensure that all concrete is placed using a minimum of 3 psi.

13. The contractor shall ensure that all concrete is placed using a minimum of 3 psi. The contractor shall also ensure that all concrete is placed using a minimum of 3 psi. The contractor shall also ensure that all concrete is placed using a minimum of 3 psi.

14. The contractor shall ensure that all concrete is placed using a minimum of 3 psi. The contractor shall also ensure that all concrete is placed using a minimum of 3 psi. The contractor shall also ensure that all concrete is placed using a minimum of 3 psi.

15. The contractor shall ensure that all concrete is placed using a minimum of 3 psi. The contractor shall also ensure that all concrete is placed using a minimum of 3 psi. The contractor shall also ensure that all concrete is placed using a minimum of 3 psi.

16. The contractor shall ensure that all concrete is placed using a minimum of 3 psi. The contractor shall also ensure that all concrete is placed using a minimum of 3 psi. The contractor shall also ensure that all concrete is placed using a minimum of 3 psi.

17. The contractor shall ensure that all concrete is placed using a minimum of 3 psi. The contractor shall also ensure that all concrete is placed using a minimum of 3 psi. The contractor shall also ensure that all concrete is placed using a minimum of 3 psi.

18. The contractor shall ensure that all concrete is placed using a minimum of 3 psi. The contractor shall also ensure that all concrete is placed using a minimum of 3 psi. The contractor shall also ensure that all concrete is placed using a minimum of 3 psi.

19. The contractor shall ensure that all concrete is placed using a minimum of 3 psi. The contractor shall also ensure that all concrete is placed using a minimum of 3 psi. The contractor shall also ensure that all concrete is placed using a minimum of 3 psi.

20. The contractor shall ensure that all concrete is placed using a minimum of 3 psi. The contractor shall also ensure that all concrete is placed using a minimum of 3 psi. The contractor shall also ensure that all concrete is placed using a minimum of 3 psi.

21. The contractor shall ensure that all concrete is placed using a minimum of 3 psi. The contractor shall also ensure that all concrete is placed using a minimum of 3 psi. The contractor shall also ensure that all concrete is placed using a minimum of 3 psi.

22. The contractor shall ensure that all concrete is placed using a minimum of 3 psi. The contractor shall also ensure that all concrete is placed using a minimum of 3 psi. The contractor shall also ensure that all concrete is placed using a minimum of 3 psi.

23. The contractor shall ensure that all concrete is placed using a minimum of 3 psi. The contractor shall also ensure that all concrete is placed using a minimum of 3 psi. The contractor shall also ensure that all concrete is placed using a minimum of 3 psi.

24. The contractor shall ensure that all concrete is placed using a minimum of 3 psi. The contractor shall also ensure that all concrete is placed using a minimum of 3 psi. The contractor shall also ensure that all concrete is placed using a minimum of 3 psi.

25. The contractor shall ensure that all concrete is placed using a minimum of 3 psi. The contractor shall also ensure that all concrete is placed using a minimum of 3 psi. The contractor shall also ensure that all concrete is placed using a minimum of 3 psi.

26. The contractor shall ensure that all concrete is placed using a minimum of 3 psi. The contractor shall also ensure that all concrete is placed using a minimum of 3 psi. The contractor shall also ensure that all concrete is placed using a minimum of 3 psi.
1. Existing building framing and conditions indicated on plan are based on existing drawings prepared by William M. Friedman & Associates, Architects, Inc. and Breiterman Juardao & Associates, dated 08-22-1979 and a limited field investigation conducted by Morabito Consultants. Contractor shall verify all existing conditions and contact Morabito Consultants prior to construction if conditions vary from what is shown on plan.

2. Existing structure consists of cast-in-place concrete two-way flat plate elevated floor slabs bearing on cast-in-place concrete columns over a framed concrete slab on grade supported by pile caps.

3. Existing elevation top of structural slab varies.

4. Existing conditions are shown half-tone.

5. All striping shall be 4" in width.

6. All non-parking areas shall have 4" wide painted striping at 1'-6" on center.

7. All striping for the standard stalls and associated non-parking areas should be yellow.

8. All striping for the handicap stalls and associated non-parking areas should be sky blue. The handicap figure should be white with a sky-blue background.

9. Parking space numbering in 6" lettering to end of parking space and on column adjacent to space per paint specification section 09 9120. Parking space numbering as noted on this sheet.

10. Apply silane sealer to all concrete slab on grade areas. See specification 03 0100.
1. TYPICAL VEHICULAR PAVEMENT SYSTEM SHALL BE 2-3/8" CONCRETE INTERLOCKING PAVERS OVER 1" SETTING BED CONSISTING OF A BLEND OF 3 PARTS ASTM C33 SAND AND 1 PART DRY TYPE IV (LOW HEAT HYDRATION) PORTLAND CEMENT. SEE LANDSCAPE ARCHITECT PLANS FOR PAVER STYLES AND FOR MORTAR SET DETAILS. MORTAR SET PAVERS SHALL HAVE GROUTED JOINTS. SEE SPECIFICATION SECTION 32 14 00 FOR MORTAR AND GROUT REQUIREMENTS. SEE SHEET WP-6 SECTION 32 14 00 FOR ADDITIONAL REQUIREMENTS. PAVER SYSTEM TO BE PLACED OVER SLOPED CONCRETE TOPPINGS PER STRUCTURAL PLANS.

2. VEHICULAR PAVEMENT AREAS AT TRANSITIONS TO SIDEWALK / ROADWAY SHALL BE MORTAR SET ON DRAINAGE BOARD FOR MINIMUM 2'-0" WIDTH, UNLESS EX. HYDRANT.
1. Existing building framing and construction depicted on plans are based on existing drawings prepared by William Friedman & Associates, Inc., and are subject to verification by Morabito Consultants. The contractor shall verify all existing conditions and contact Morabito Consultants prior to construction if conditions vary from what is shown on plan.

2. Existing structure consists of cast-in-place concrete two-way flat plate floor slabs bearing on cast-in-place concrete columns.

3. Existing elevation top of structural slab varies; refer to existing architectural elevations for top of slab elevation at each floor. All elevations and dimensions shall be verified by the contractor.

4. Existing conditions are shown half-tone.

5. Unit owners may elect to replace their existing windows/doors. Replacement hardware shall be per the schedules and guidelines on the architectural drawings by Scott Dyer Architects. As a component of window/door replacement, storm shutters shall be removed. Window/door replacement masonry openings will be waterproofed in accordance with S2C-3.3.

6. After all concrete repairs at unit balconies have been completed, the contractor shall conduct a water test and provide an epoxy/sand leveling coat as required to eliminate ponding. Finish all balconies with a traffic-bearing membrane per Sheet TBD.

7. See bid form for all other items not shown on plan.

8. EXISTING BUILDING FRAMING AND CONDITIONS INDICATED ON PLAN ARE BASED ON EXISTING DRAWINGS PREPARED BY WILLIAM M. FRIEDMAN & ASSOCIATES ARCHITECTS, INC AND BREITERMAN JUARDO & ASSOCIATES (CONSULTING ENGINEERS), DATED 08-22-1979 AND A LIMITED FIELD INVESTIGATION CONDUCTED BY MORABITO CONSULTANTS. THE CONTRACTOR SHALL VERIFY ALL EXISTING CONDITIONS AND CONTACT MORABITO CONSULTANTS PRIOR TO CONSTRUCTION IF CONDITIONS VARY FROM WHAT IS SHOWN ON PLAN.

FIRE DOOR TO BE REPLACED

FIRE DOOR TO BE REPLACED
1. Existing building framing and conditions indicated on plan are based on existing drawings prepared by William M. Friedman & Associates, Architects, and plans and conditions prepared by Morabito Consultants, the Contractor shall verify all existing conditions and contact Morabito Consultants prior to construction if conditions vary from what is shown on plan.

2. Existing structure consists of cast-in-place concrete two-way flat plate elevated floor slab bearing on cast-in-place concrete columns.

3. Existing elevation top of structural slab varies; refer to existing architectural elevations for top of slab elevation at each floor. All elevations and dimensions shall be verified by the Contractor.

4. Existing conditions are shown half-tone.

5. Unit owners may elect to replace their existing windows/doors. Replacement hardware shall be per the schedules and guidelines on the architectural drawings by Scott Dyer Architects. As a component of window/door replacement, storm shutters shall be removed. Window/door replacement masonry openings will be waterproofed in accordance with S2C-3.3.

6. After all concrete repairs at unit balconies have been completed the Contractor shall conduct a water test and provide an epoxy/sand leveling coat as required to eliminate ponding. Finish all balconies with a traffic bearing membrane per Sheet TBM-1.

7. See bid form for all other items noted shown on plan.
1. EXISTING BUILDING FRAMING AND CONDITIONS INDICATED ON PLAN ARE BASED ON EXISTING DRAWINGS PREPARED BY WILLIAM M. FRIEDMAN & ASSOCIATES ARCHITECTS, INC AND BREITERMAN JUARDO & ASSOCIATES (CONSULTING ENGINEERS), DATED 08-22-1979 AND A LIMITED FIELD INVESTIGATION CONDUCTED BY MORABITO CONSULTANTS. THE CONTRACTOR SHALL VERIFY ALL EXISTING CONDITIONS AND CONTACT MORABITO CONSULTANTS PRIOR TO CONSTRUCTION IF CONDITIONS VARY FROM WHAT IS SHOWN ON PLAN.

2. EXISTING STRUCTURE CONSISTS OF CAST-IN-PLACE CONCRETE TWO-WAY FLAT PLATE ELEVATED FLOOR SLAB BEARING ON CAST-IN-PLACE CONCRETE COLUMNS.

3. EXISTING ELEVATION TOP OF STRUCTURAL SLAB VARIES, REFER TO EXISTING ARCHITECTURAL ELEVATIONS FOR TOP OF SLAB ELEVATION AT EACH FLOOR. ALL ELEVATIONS AND DIMENSIONS SHALL BE VERIFIED BY THE CONTRACTOR.

4. EXISTING CONDITIONS ARE SHOWN HALF-TONE.

5. UNIT OWNERS MAY ELECT TO REPLACE THEIR EXISTING WINDOWS/DOORS. REPLACEMENT HARDWARE SHALL BE PER THE SCHEDULES AND GUIDELINES ON THE ARCHITECTURAL DRAWINGS BY SCOTT DYER ARCHITECTS. AS A COMPONENT OF WINDOW/DOOR REPLACEMENT, STORM SHUTTERS SHALL BE REMOVED. WINDOW/DOOR REPLACEMENT MASONRY OPENINGS WILL BE WATERPROOFED IN ACCORDANCE WITH S2C-3.3.

6. AFTER ALL CONCRETE REPAIRS AT UNIT BALCONIES HAVE BEEN COMPLETED THE CONTRACTOR SHALL CONDUCT A WATER TEST AND PROVIDE AN EPOXY/SAND LEVELING COAT AS REQUIRED TO ELIMINATE PONDING. FINISH ALL BALCONIES WITH A TRAFFIC BEARING MEMBRANE PER SHEET TBM-1.

7. SEE BID FORM FOR ALL OTHER ITEMS NOTED ON PLAN.
1. Existing building framing and conditions indicated on plans are based on existing drawings prepared by William M. Friedman & Associates Architects, Inc., and Beriterman Juardio & Associates (Consulting Engineers), dated 08-22-1979 and a limited field investigation conducted by Morabito Consultants. The contractor shall verify all existing conditions and contact Morabito Consultants prior to construction if conditions vary from what is shown on plan.

2. Existing structure consists of cast-in-place concrete two-way flat plate elevated floor slab bearing on cast-in-place concrete columns.

3. Existing elevation top of structural slab is 124'-2"±. All elevations and dimensions shall be verified by the contractor.

4. Existing conditions are shown half-tone.

5. Unit owners may elect to replace their existing windows/doors. Replacement hardware shall be per the schedules and guidelines on the architectural drawings by Scott Dyer Architects. As a component of window/door replacement, storm shutters shall be removed. Window/door replacement masonry openings will be waterproofed in accordance with S2C-3.3.

6. After all concrete repairs at unit balconies have been completed, the contractor shall conduct a water test and provide an epoxy/sand leveling coat as required to eliminate ponding. Finish all balconies with a traffic-bearing membrane per sheet TBM-1.

7. See bid form for all other items not shown on plan.

8. Replace common area windows with new units complying with FBC 2020. Replacement to include new wood bucks, waterproofing of the masonry opening and bucks, temporary protection, and strengthening of the adjacent masonry cell at each side of window to be replaced.

9. Fire door to be replaced.
1. EXISTING BUILDING FRAMING AND CONDITIONS INDICATED ON PLAN ARE BASED ON EXISTING DRAWINGS PREPARED BY WILLIAM M. FRIEDMAN & ASSOCIATES ARCHITECTS, INC AND BREITERMAN JUARDO & ASSOCIATES (CONSULTING ENGINEERS), DATED 08-22-1979 AND A LIMITED FIELD INVESTIGATION CONDUCTED BY MORABITO CONSULTANTS. THE CONTRACTOR SHALL VERIFY ALL EXISTING CONDITIONS AND CONTACT MORABITO CONSULTANTS PRIOR TO CONSTRUCTION IF CONDITIONS VARY FROM WHAT IS SHOWN ON PLAN.

2. EXISTING STRUCTURE CONSISTS OF CAST-IN-PLACE CONCRETE TWO-WAY FLAT PLATE ELEVATED FLOOR SLAB BEARING ON CAST-IN-PLACE CONCRETE COLUMNS.

3. EXISTING ELEVATION TOP OF STRUCTURAL SLAB IS 124'-2"±. ALL ELEVATIONS AND DIMENSIONS SHALL BE VERIFIED BY THE CONTRACTOR.

4. EXISTING CONDITIONS ARE SHOWN HALF-TONE.

5. UNIT OWNERS MAY ELECT TO REPLACE THEIR EXISTING WINDOWS/DOORS. REPLACEMENT HARDWARE SHALL BE PER THE SCHEDULES AND GUIDELINES ON THE ARCHITECTURAL DRAWINGS BY SCOTT DYER ARCHITECTS. AS A COMPONENT OF WINDOW/DOOR REPLACEMENT, STORM SHUTTERS SHALL BE REMOVED. WINDOW/DOOR REPLACEMENT MASONRY OPENINGS WILL BE WATERPROOFED IN ACCORDANCE WITH S2C-3.3.

6. SEE BID FORM FOR ALL OTHER ITEMS NO NOTE SHOWN ON PLAN.

NEW FIXED LADDER WITH ACCESS FROM PENTHOUSE ROOF LEVEL TO ELEVATOR SHAFT ROOF LEVEL. LADDER TO BE IN ACCORDANCE WITH THE 2020 FBC - MECHANICAL, 7TH EDITION.
1. Existing building framing and conditions indicated on plan are based on existing drawings and verified by a limited field investigation conducted by Morabito Consultants. Contractor shall verify all existing conditions and contact Morabito Consultants prior to construction if conditions vary from what is shown on plan.

2. Existing conditions are shown half-tone.

3. Existing planters/BRICK walls and removable glass windows and doors are part of first floor common areas.

4. Existing conditions are shown half-tone.

5. Existing planters/BRICK walls and removable glass windows and doors are part of first floor common areas.

6. Previous temporary pipe walls and removable glass windows and doors are part of first floor common areas.

7. Existing conditions are shown half-tone.

8. Existing conditions are shown half-tone.

9. Planters/masonry walls to be removed are noted on plan.

10. Monitor soil, and waterproofing (soil, and waterproofing requires removal of the existing concrete topping slab to expose the existing structural slab).

11. All areas to be repaired must be reviewed and approved by Morabito Consultants, Inc. prior to commencement of work.

12. Remove existing concrete topping slab to expose the existing structural slab.

13. Prepare and submit construction schedule with phasing and traffic control plans to the owner and engineer for review and approval prior to commencement of work.

14. Remove all existing pavers and sand.

15. Remove existing concrete topping slab to expose the existing structural slab.

16. Remove bollard.

17. Remove shaft.

18. All areas to be repaired must be reviewed and approved by Morabito Consultants, Inc. prior to commencement of work.

19. Existing conditions are shown half-tone.

20. Determine temporary shaft walls and removable glass windows and doors are part of first floor common areas.

21. Existing conditions are shown half-tone.

22. Determine temporary shaft walls and removable glass windows and doors are part of first floor common areas.

23. All areas to be repaired must be reviewed and approved by Morabito Consultants, Inc. prior to commencement of work.

24. Planters/brick walls and removable glass windows and doors are part of first floor common areas.
1. EXISTING BUILDING FRAMING AND CONDITIONS INDICATED ON PLAN ARE BASED ON EXISTING DRAWINGS.
2. EXISTING CONDITIONS ARE SHOWN IN HALF-TONE.
3. EXISTING CONDITIONS ARE SHOWN WILL ILINE.
4. EXISTING ELEVATION TOP OF STRUCTURAL SLAB SHOWN REFER TO PLAN FOR TOP OF SLAB.
5. EXISTING ELEVATION TOP OF EXISTING FINISHED SURFACES REFER TO "BOUNDARY SURVEY" BY J. BONFILL & ASSOCIATES, INC. DATED AUGUST 7, 2004.
6. EXISTING ELEVATION TOP OF CONCRETE TOPPINGS.
7. FOR ELEVATION TOP OF EXISTING FINISHED SURFACES REFER TO "BOUNDARY SURVEY" BY J. BONFILL & ASSOCIATES, INC. DATED AUGUST 7, 2004.
8. FULLY BONDED CONCRETE OVERLAY AREAS ARE NOTED ON PLAN AND MARKED "X" REFER TO PLAN FOR PRECIPITATION POINTS TO CONSTRUCTION OF CONCRETE OVERLAY WHERE MARKED "X" IS SHOWN ON PLAN.
9. CONCRETE WALLS THAT ARE SUPPORTING EARTH MUST BE ALLOWED TO CURE FOR 7 DAYS PRIOR TO TOP OF BONDED CONCRETE OVERLAYS.
10. FULLY BONDED CONCRETE OVERLAY AREAS ARE NOTED ON PLAN WHERE "X" MARKED CONCRETE "X" IS SHOWN ON PLAN.
11. FULLY BONDED CONCRETE OVERLAY AREAS ARE NOTED ON PLAN WHERE "X" MARKED CONCRETE."X" IS SHOWN ON PLAN.
12. ENCE CONCRETE REPAIRS AND PLACEMENT OF BONDED Overlay ARE NOTED ON PLAN WHERE "X" MARKED CONCRETE "X" IS SHOWN ON PLAN.
13. SEE BID FORM FOR ALL OTHER ITEMS SHOWN ON PLAN.
14. SEE BID FORM FOR ALL OTHER ITEMS SHOWN ON PLAN.
15. FOR ELEVATION TOP OF EXISTING FINISHED SURFACES REFER TO "BOUNDARY SURVEY" BY J. BONFILL & ASSOCIATES, INC. DATED AUGUST 7, 2004.
17. FOR ELEVATION TOP OF EXISTING FINISHED SURFACES REFER TO "BOUNDARY SURVEY" BY J. BONFILL & ASSOCIATES, INC. DATED AUGUST 7, 2004.
18. FOR ELEVATION TOP OF EXISTING FINISHED SURFACES REFER TO "BOUNDARY SURVEY" BY J. BONFILL & ASSOCIATES, INC. DATED AUGUST 7, 2004.
1. EXISTING BUILDING FRAMING AND CONDITIONS INDICATED ON PLAN ARE BASED ON EXISTING DRAWINGS PREPARED BY WILLIAM M. FRIEDMAN & ASSOCIATES ARCHITECTS, INC AND BREITERMAN JUARDO & ASSOCIATES (CONSULTING ENGINEERS), DATED 08-22-1979 AND A LIMITED FIELD INVESTIGATION CONDUCTED BY MORABITO CONSULTANTS. THE CONTRACTOR SHALL VERIFY ALL EXISTING CONDITIONS AND CONTACT MORABITO CONSULTANTS PRIOR TO CONSTRUCTION IF CONDITIONS VARY FROM WHAT IS SHOWN ON PLAN.

2. EXISTING SECOND FLOOR FRAMING IS A 8" THICK CAST-IN-PLACE CONCRETE TWO-WAY FLAT PLATE FLOOR SLAB REINFORCED WITH A BOTTOM MAT OF #4 AT 13"o/c AND TOP BARS AS INDICATED ON 'S6' OF THE EXISTING DRAWINGS.

3. EXISTING ELEVATION TOP OF STRUCTURAL SLAB IS 24' -5"±. ALL ELEVATIONS AND DIMENSIONS SHALL BE VERIFIED BY THE CONTRACTOR.

4. EXISTING CONDITIONS ARE SHOWN HALF-TONE.

5. AREA OF EXISTING SOFFIT AND INT. CEILING TO BE REMOVED NOTED ON PLAN SEE

6. SEE BID FORM FOR ALL OTHER ITEMS NOTE SHOWN ON PLAN.
- PARTIAL DEPTH REPAIRS UP TO 4" THICK
 • STRUCTURE SHOWN IS GENERIC AND WILL DIFFER PER PLANS
 • FOR TYPICAL REPAIR NOTES, SEE

- SLAB OFFIT REPAIR
 • STRUCTURE SHOWN IS GENERIC
 • PARTIAL DEPTH REPAIRS UP TO 4" THICK
 • #5 BAR HOOKS
 • STRUCTURE SHOWN IS GENERIC AT 2'-0" o/c AND WILL DIFFER PER PLANS

- SLAB FULL-DEPTH REPAIR
 • SLAB SOFFIT REPAIRS SHALL ONLY BE SEALANT JOINT
 • AND WILL DIFFER PER PLANS
 • NOTES 8 & 9
 • SEE PLANS FOR EXISTING
 • OR GREATER AND ONLY WITH EXPLICIT
 • SEE PLANS FOR EXISTING SLAB REINFORCEMENT

- SLAB FULL-DEPTH DECK EDGE REPAIR
 • PROVIDE APPROVED PEA GRAVEL CONCRETE MIX TO LOCK IN TOPPING.
 • NOTED 7
 • SEE PLANS & BID FORM

- SLAB TOP SURFACE REPAIR
 • CRACKS TO BE REPAIRED MUST BE PRE-APPROVED BY ENGINEER.
 • PRIOR TO CHEMICAL CRACK INJECTION OR INSTALLATION, ALL CRACKS ARE CLEARED
 • OF ALL EXCESS MATERIAL, PARTIAL DEPTH LAYERS AND EXCESS MOISTURE.
 • ALL FULL DEPTHS CRACKS MUST BE EPOXY PRIMED PRIOR TO INJECTION.
 • CLEAN SURFACE OF EXCESS EPOXY MATERIAL AFTER USE IS COMPLETE.
 • WHEN LAPPING JOINTS IS NOT PRACTICAL, USE APPROVED ELECTRO-MAGNETIC CONSTRUCTION EQUIPMENT TO DEBEOND THE JOINT.
 • PROVIDE CONTINUOUS DEBONDING MATERIAL AT BOTTOM OF CRACK
 • TO PREVENT BOND WITH SILICONE OR TAPE

- COLUMN SPALL REPAIR
 • NON-STRUCTURAL CRACKS TO BE REPAIRED MAY BE REPAIRED TO BE REPAIRED...
 • CLEAN JOINT TO ALLOW BOND
 • PROVIDE CONTINUOUS DEBONDING MATERIAL AT BOTTOM OF CRACK

- BONDED TOPPING TERMINATION
 • BONDING DELAYED WITH GRAVITY FED EPOXY
 • NON-STRUCTURAL CRACK REPAIR (CRACK SEALANT)

- STRUCTURAL CRACK REPAIR (EPOXY INJECTION)
 • STRUCTURAL CRACK REPAIR (CRACK SEALANT)

- FOR TYPICAL REPAIR NOTES, SEE
PAVERS AROUND DRAINS SHALL BE SET ON A MINIMUM 8" WIDE BAND OF MORTAR TO PREVENT TYPICAL DRY SAND SETTING.

FOR ADDITIONAL INFORMATION AT TOPPING SLAB, SEE S2C-2.2.

FOR ADDITIONAL INFORMATION AT WALLS TALLER THAN 4', 6" x 6" PROVIDE #4 AT EX. SLAB AND 36" o/c IN TOPPING SLAB.

BONDED OVERLAY / TOPPING SLAB AT NEW EXTERIOR & INTERIOR CMU WALLS

WHERE TOPPING SLAB SLIPS TO EXISTING TOP OF EXISTING SIDEWALK TO REMAIN.

PARTIAL DEPTH PATCH SHALL EXTEND UNTIL TOPPING.

NEW MASONRY WALL SYSTEM AT EXTERIOR WALL

LANDSCAPING AND SHEET WP-6

FOR ADDITIONAL INFORMATION.

FOR TYPICAL STUCCO JOINTS. SEE SPECIFICATION SECTION 32 14 00 FOR REQUIRED REINFORCING.

FOR ADDITIONAL INFORMATION AT WALLS TALLER THAN 4', EMBEDMENT). SPACE PINS AT 18" o/c IN EACH DIRECTION IN BONDED OVERLAY.

WHERE TOPPING SLAB SLIPS TO EXISTING TOP OF EXISTING DRIVEWAY RAMP AT FOUNDATION.

EXISTING DRIVEWAY RAMP AT FOUNDATION

EXISTING MASONRY WALLS AND MOUND AS REQUIRED

DO NOT CUT EXISTING REINFORCEMENT WITHOUT APPROVAL OF ENGINEER.

WHERE FINAL ELEVATIONS REQUIRE ADDITIONAL INFORMATION

AT TOPPING SLAB, SEE S2C-2.3.

TOP OF TOPPING SLAB - 3'-6" (MIN)

1A

1C

WHERE TOPPING SLAB SLIPS TO EXISTING TOP OF EXISTING SIDEWALK TO REMAIN.

NOTE 1:

MINIMUM BONDED TOPPING SLAB THICKNESS AT DRAINS SHALL BE 1 1/2" = 1'-0"

HILTI HUS 3/8" X 5" (3 1/4" MIN. THICKNESS AT DRAINS)

1.0 FOR LOCATIONS AND REQUIRED REINFORCING.

FOR ADDITIONAL INFORMATION AT TOPPING SLAB, SEE S2C-2.3.

CCW MIRADRAIN DRAINAGE COMPOSITE

FOR ADDITIONAL INFORMATION AT NEW DECK DRAIN, SEE S2C-2.3.

5 DRAIN IN TOPPING SLAB AT PAVER SYSTEM (ALTERNATE)

1 1/2" = 1'-0"

206 Via Condado Way | Palm Beach Gardens, FL 33418

- 1701-561.316.7660 | www.morabitoconsultants.com

License: 89035

This item has been digitally signed and sealed by Robert J. Miller on the date adjacent to the seal. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.
NEW DRIVEWAY RAMP AT FOUNDATION

RAMP SLAB AT EXISTING COLUMN

EXISTING UPTURN BEAM AT ENTRANCE RAMP

TOPPING SLAB RAMP TRANSITION

1. NEW DRIVEWAY RAMP AT FOUNDATION

2. RAMP SLAB AT EXISTING COLUMN

3. NEW UPTURN BEAM AT ENTRANCE RAMP

4. EXISTING UPTURN BEAM AT ENTRANCE RAMP

5. TOPPING SLAB RAMP TRANSITION

ROADWAY SHALL BE MORTAR SET ON DRAINAGE BOARD FOR MINIMUM 2' GROUTED JOINTS. SEE SPECIFICATION SECTION 32 14 00 FOR MORTAR AND GROUT REQUIREMENTS. SEE SHEET WP-6 FOR CCW PROTECTION BOARD PAVER INSTALLATION.

Provide sealant 1" setting bed 1'-0" column reinforcement existing sidewalk reinforcement to remain 9 1/2" top of existing column to remain 3/4" CLR CARLISLE CCW-500 WATERPROOFING (TYP.) existing foundation dowels into slab to remain 1" setting bed CAST REINFORCEMENT SLAB TOGETHER WITH DROP PANEL.

For additional information on topping slab, see.

COLUMN N = 600 PS

4" COLUMN VERTICALS

COLUMN TYPES AS SHOWN

EXTERIOR COLUMN MUST BE SUBMERGED WITH 12' FLOOD.

For additional information on topping slab, see.

- 1" setting bed

PIECE Premium Composite

Top of topping slab 1'-0" setting bed 1'-3 1/2" max 9 1/2" (MIN)

2' REINFORCEMENT EXISTING SIDEWALK TO REMAIN

9 1/2" ± 1/4" MIN. EMBEDMENT

3/4" CLR CARLISLE CCW-500 WATERPROOFING (TYP.)

EX. #5 AT 12" O/C

EX. #4 AT 12" O/C

EX. #3 AT 12" O/C

#5 AT 12" O/C WITH 90° TAPER NEW SLAB TO BEAR ON WALL EXISTING COLUMN AS SHOWN

Without 12" slab to column as required.

PROVIDE SAW CUT IN TOPPING SLAB WITHIN 8 HOURS OF POUR

PLACE PRECAST REINFORCEMENT 1" BLOCK OVER DROP PANEL

For typical precut termination at base, see.

IF IRREGULAR TANK AT THE PROVE AS AT 12" O/C WITH 36" O/C FOR COLUMN HORIZONTALS, 18" O/C FOR COLUMN VERTICALS.

IF NOT TAPERED 6' PROVIDE AS AT 6" O/C

OPEN ALL COLUMN RAS.

TOP OF SLAB AND 36" O/C IN TOPPING SLAB

3" = 1'-0"

1 1/2" = 1'-0"

1C 1A

S2C-2.3

S2C-2.6

S2C-3.1

Date: 04/26/21

Scale: 1" = 1'-0"

Sheet Title: PLAZA DETAILS
STEPS SHALL BE MORTAR SET ON DRAINAGE BOARD PRIOR TO INSTALLATION OF THE TOPPING SLAB. SEE PLANS FOR DETAILS OF DRAINAGE BOARD INSTALLATION. MORTAR SET PAVERS SHALL HAVE CAREFULLY DEMO REQUIRED PORTION OF 3'-0" GROUTED JOINTS. SEE SPECIFICATION SECTION 32 CARLISLE CCW-500 WATERPROOFING PAVER SYSTEM, SEE CARLISLE CCW PROTECTION BOARD CONTINUOUS UNDER PEDESTAL #3 TIES AT 10" O/C.

TO ALL STEPS, SLOPE MINIMAL TO 1" PER FOOT TO DRAINAGE, SEE PLANS FOR ELEVATION OF TOPPING SLAB

STEPS SHALL BE MORTAR SET ON DRAINAGE BOARD PRIOR TO INSTALLATION OF THE TOPPING SLAB. SEE PLANS FOR DETAILS OF DRAINAGE BOARD INSTALLATION. MORTAR SET PAVERS SHALL HAVE CAREFULLY DEMO REQUIRED PORTION OF 3'-0" GROUTED JOINTS. SEE SPECIFICATION SECTION 32 CARLISLE CCW-500 WATERPROOFING PAVER SYSTEM, SEE CARLISLE CCW PROTECTION BOARD CONTINUOUS UNDER PEDESTAL #3 TIES AT 10" O/C.

TO ALL STEPS, SLOPE MINIMAL TO 1" PER FOOT TO DRAINAGE, SEE PLANS FOR ELEVATION OF TOPPING SLAB

STEPS SHALL BE MORTAR SET ON DRAINAGE BOARD PRIOR TO INSTALLATION OF THE TOPPING SLAB. SEE PLANS FOR DETAILS OF DRAINAGE BOARD INSTALLATION. MORTAR SET PAVERS SHALL HAVE CAREFULLY DEMO REQUIRED PORTION OF 3'-0" GROUTED JOINTS. SEE SPECIFICATION SECTION 32 CARLISLE CCW-500 WATERPROOFING PAVER SYSTEM, SEE CARLISLE CCW PROTECTION BOARD CONTINUOUS UNDER PEDESTAL #3 TIES AT 10" O/C.

TO ALL STEPS, SLOPE MINIMAL TO 1" PER FOOT TO DRAINAGE, SEE PLANS FOR ELEVATION OF TOPPING SLAB

STEPS SHALL BE MORTAR SET ON DRAINAGE BOARD PRIOR TO INSTALLATION OF THE TOPPING SLAB. SEE PLANS FOR DETAILS OF DRAINAGE BOARD INSTALLATION. MORTAR SET PAVERS SHALL HAVE CAREFULLY DEMO REQUIRED PORTION OF 3'-0" GROUTED JOINTS. SEE SPECIFICATION SECTION 32 CARLISLE CCW-500 WATERPROOFING PAVER SYSTEM, SEE CARLISLE CCW PROTECTION BOARD CONTINUOUS UNDER PEDESTAL #3 TIES AT 10" O/C.

TO ALL STEPS, SLOPE MINIMAL TO 1" PER FOOT TO DRAINAGE, SEE PLANS FOR ELEVATION OF TOPPING SLAB

STEPS SHALL BE MORTAR SET ON DRAINAGE BOARD PRIOR TO INSTALLATION OF THE TOPPING SLAB. SEE PLANS FOR DETAILS OF DRAINAGE BOARD INSTALLATION. MORTAR SET PAVERS SHALL HAVE CAREFULLY DEMO REQUIRED PORTION OF 3'-0" GROUTED JOINTS. SEE SPECIFICATION SECTION 32 CARLISLE CCW-500 WATERPROOFING PAVER SYSTEM, SEE CARLISLE CCW PROTECTION BOARD CONTINUOUS UNDER PEDESTAL #3 TIES AT 10" O/C.

TO ALL STEPS, SLOPE MINIMAL TO 1" PER FOOT TO DRAINAGE, SEE PLANS FOR ELEVATION OF TOPPING SLAB

STEPS SHALL BE MORTAR SET ON DRAINAGE BOARD PRIOR TO INSTALLATION OF THE TOPPING SLAB. SEE PLANS FOR DETAILS OF DRAINAGE BOARD INSTALLATION. MORTAR SET PAVERS SHALL HAVE CAREFULLY DEMO REQUIRED PORTION OF 3'-0" GROUTED JOINTS. SEE SPECIFICATION SECTION 32 CARLISLE CCW-500 WATERPROOFING PAVER SYSTEM, SEE CARLISLE CCW PROTECTION BOARD CONTINUOUS UNDER PEDESTAL #3 TIES AT 10" O/C.

TO ALL STEPS, SLOPE MINIMAL TO 1" PER FOOT TO DRAINAGE, SEE PLANS FOR ELEVATION OF TOPPING SLAB

STEPS SHALL BE MORTAR SET ON DRAINAGE BOARD PRIOR TO INSTALLATION OF THE TOPPING SLAB. SEE PLANS FOR DETAILS OF DRAINAGE BOARD INSTALLATION. MORTAR SET PAVERS SHALL HAVE CAREFULLY DEMO REQUIRED PORTION OF 3'-0" GROUTED JOINTS. SEE SPECIFICATION SECTION 32 CARLISLE CCW-500 WATERPROOFING PAVER SYSTEM, SEE CARLISLE CCW PROTECTION BOARD CONTINUOUS UNDER PEDESTAL #3 TIES AT 10" O/C.
NEW AIR SHAFT WALLS

- PROVIDE SEALANT JOINT.
- PROVIDE SEALANT JOINT.
- FOR ADHESIVE INFORMATION IN TOPPING SLAB.

BASEMENT WALL AT NEW BEAM

- PROVIDE CONTROL JOINTS IN TRANSVERSE PLANE.
- PROVIDE SEALANT JOINT.
- PROVIDE SEALANT JOINT.
- PROVIDE SEALANT JOINT.

ADA RAMP AT/Foundation

- PROVIDE SEALANT JOINT.
- PROVIDE SEALANT JOINT.
- PROVIDE SEALANT JOINT.
- PROVIDE SEALANT JOINT.

ADA RAMP AT ENTRANCE

- PROVIDE SEALANT JOINT.
- PROVIDE SEALANT JOINT.
- PROVIDE SEALANT JOINT.
- PROVIDE SEALANT JOINT.

EXISTING SERVICE DRIVEWAY RAMP

- PROVIDE SEALANT JOINT.
- PROVIDE SEALANT JOINT.
- PROVIDE SEALANT JOINT.
- PROVIDE SEALANT JOINT.

EXISTING SERVICE DRIVEWAY RAMP

- PROVIDE SEALANT JOINT.
- PROVIDE SEALANT JOINT.
- PROVIDE SEALANT JOINT.
- PROVIDE SEALANT JOINT.
1. PROVIDE FLUID APPLIED EXISTING SPALLED OR HOLLOW SOUNDING STUCCO TO BE REPAIRED GALVANIZED METAL STUD FRAMING AT 24" o/c MAX.

2. ALL SCREWS SHALL BE 1/2" FROM EDGES OF CEMENT BOARD. PROVIDE DOUBLE JOINTS / STUDS AS REQUIRED TO MAINTAIN 1/2" EDGE DISTANCE.

3. PRIOR TO COMMENCEMENT OF STUCCO REPAIRS, THE CONTRACTOR SHALL HIRE AN EXPERIENCED TESTING LABORATORY TO COMPLETE A CHEMICAL AND MICROSCOPIC Finish Coat to Match Existing Color and Texture.

4. CHIP-OFF ALL DELAMINATED STUCCO WITH CHISEL AND HAMMER.

5. PROPERLY CLEAN EXISTING SURFACE TO RECEIVE STUCCO REPAIR.

6. MECHANICALLY ROUGHEN EXISTING BROWN COAT SURFACE WITH SAND BLASTING OR METAL STUD TRACK RUNNER ASSURE PROPER BONDING. SURFACE MUST BE STRUCTURALLY SOUND AND CLEAN, FREE OF ANY KIND.

7. TOUCH-UP BROWN COAT AND INSTALL NEW FINISH COAT OF STUCCO TO MATCH EXISTING COLOR, THICKNESS AND APPEARANCE.

NEW STUCCO OVER LIGHTGAGE / CEMENT BOARD SURFACES

NEW STUCCO OVER MASONRY / CONCRETE SURFACES

STUCCO REPAIR OVER MASONRY / CONCRETE SURFACES

REPAIR OF STUCCO CRACKS GREATER THAN 1/8" WIDE

REPAIR OF STUCCO CRACKS LESS THAN 1/8" WIDE

STUCCO REPAIR AT WALL AND COLUMN JOINTS

STUCCO REPAIR AT FLOOR LINES

STUCCO WEEP SCREED AT BASE/Foundation

STUCCO REINFORCEMENT AT FLOOR LINES

STUCCO REINFORCEMENT AT WALL AND COLUMN JOINTS

EXISTING EXTERIOR MASONRY BLOCK WALL

EXISTING EXTERIOR LIGHTGAGE / CEMENT BOARD SURFACES

EXISTING EXTERIOR MASONRY / CONCRETE SURFACES

EXISTING CONCRETE WALL

EXISTING CONCRETE SLAB

EXISTING STUCCO

EXISTING EXTERIOR MASONRY BLOCK WALL

EXISTING EXTERIOR LIGHTGAGE / CEMENT BOARD SURFACES

EXISTING EXTERIOR MASONRY / CONCRETE SURFACES

EXISTING CONCRETE WALL

EXISTING CONCRETE SLAB

EXISTING STUCCO

EXISTING EXTERIOR MASONRY BLOCK WALL

EXISTING EXTERIOR LIGHTGAGE / CEMENT BOARD SURFACES

EXISTING EXTERIOR MASONRY / CONCRETE SURFACES

EXISTING CONCRETE WALL

EXISTING CONCRETE SLAB

EXISTING STUCCO

EXISTING EXTERIOR MASONRY BLOCK WALL

EXISTING EXTERIOR LIGHTGAGE / CEMENT BOARD SURFACES

EXISTING EXTERIOR MASONRY / CONCRETE SURFACES

EXISTING CONCRETE WALL

EXISTING CONCRETE SLAB

EXISTING STUCCO

EXISTING EXTERIOR MASONRY BLOCK WALL

EXISTING EXTERIOR LIGHTGAGE / CEMENT BOARD SURFACES

EXISTING EXTERIOR MASONRY / CONCRETE SURFACES

EXISTING CONCRETE WALL

EXISTING CONCRETE SLAB

EXISTING STUCCO

EXISTING EXTERIOR MASONRY BLOCK WALL

EXISTING EXTERIOR LIGHTGAGE / CEMENT BOARD SURFACES

EXISTING EXTERIOR MASONRY / CONCRETE SURFACES

EXISTING CONCRETE WALL

EXISTING CONCRETE SLAB

EXISTING STUCCO

EXISTING EXTERIOR MASONRY BLOCK WALL

EXISTING EXTERIOR LIGHTGAGE / CEMENT BOARD SURFACES

EXISTING EXTERIOR MASONRY / CONCRETE SURFACES

EXISTING CONCRETE WALL

EXISTING CONCRETE SLAB

EXISTING STUCCO

EXISTING EXTERIOR MASONRY BLOCK WALL

EXISTING EXTERIOR LIGHTGAGE / CEMENT BOARD SURFACES

EXISTING EXTERIOR MASONRY / CONCRETE SURFACES

EXISTING CONCRETE WALL

EXISTING CONCRETE SLAB

EXISTING STUCCO

EXISTING EXTERIOR MASONRY BLOCK WALL

EXISTING EXTERIOR LIGHTGAGE / CEMENT BOARD SURFACES

EXISTING EXTERIOR MASONRY / CONCRETE SURFACES

EXISTING CONCRETE WALL

EXISTING CONCRETE SLAB

EXISTING STUCCO

EXISTING EXTERIOR MASONRY BLOCK WALL

EXISTING EXTERIOR LIGHTGAGE / CEMENT BOARD SURFACES

EXISTING EXTERIOR MASONRY / CONCRETE SURFACES

EXISTING CONCRETE WALL

EXISTING CONCRETE SLAB

EXISTING STUCCO

EXISTING EXTERIOR MASONRY BLOCK WALL

EXISTING EXTERIOR LIGHTGAGE / CEMENT BOARD SURFACES

EXISTING EXTERIOR MASONRY / CONCRETE SURFACES

EXISTING CONCRETE WALL

EXISTING CONCRETE SLAB

EXISTING STUCCO

EXISTING EXTERIOR MASONRY BLOCK WALL

EXISTING EXTERIOR LIGHTGAGE / CEMENT BOARD SURFACES

EXISTING EXTERIOR MASONRY / CONCRETE SURFACES

EXISTING CONCRETE WALL

EXISTING CONCRETE SLAB

EXISTING STUCCO

EXISTING EXTERIOR MASONRY BLOCK WALL

EXISTING EXTERIOR LIGHTGAGE / CEMENT BOARD SURFACES

EXISTING EXTERIOR MASONRY / CONCRETE SURFACES

EXISTING CONCRETE WALL

EXISTING CONCRETE SLAB

EXISTING STUCCO

EXISTING EXTERIOR MASONRY BLOCK WALL

EXISTING EXTERIOR LIGHTGAGE / CEMENT BOARD SURFACES

EXISTING EXTERIOR MASONRY / CONCRETE SURFACES

EXISTING CONCRETE WALL

EXISTING CONCRETE SLAB

EXISTING STUCCO

EXISTING EXTERIOR MASONRY BLOCK WALL

EXISTING EXTERIOR LIGHTGAGE / CEMENT BOARD SURFACES

EXISTING EXTERIOR MASONRY / CONCRETE SURFACES

EXISTING CONCRETE WALL

EXISTING CONCRETE SLAB

EXISTING STUCCO

EXISTING EXTERIOR MASONRY BLOCK WALL

EXISTING EXTERIOR LIGHTGAGE / CEMENT BOARD SURFACES

EXISTING EXTERIOR MASONRY / CONCRETE SURFACES

EXISTING CONCRETE WALL

EXISTING CONCRETE SLAB

EXISTING STUCCO

EXISTING EXTERIOR MASONRY BLOCK WALL

EXISTING EXTERIOR LIGHTGAGE / CEMENT BOARD SURFACES

EXISTING EXTERIOR MASONRY / CONCRETE SURFACES

EXISTING CONCRETE WALL

EXISTING CONCRETE SLAB

EXISTING STUCCO

EXISTING EXTERIOR MASONRY BLOCK WALL

EXISTING EXTERIOR LIGHTGAGE / CEMENT BOARD SURFACES

EXISTING EXTERIOR MASONRY / CONCRETE SURFACES

EXISTING CONCRETE WALL

EXISTING CONCRETE SLAB

EXISTING STUCCO

EXISTING EXTERIOR MASONRY BLOCK WALL

EXISTING EXTERIOR LIGHTGAGE / CEMENT BOARD SURFACES

EXISTING EXTERIOR MASONRY / CONCRETE SURFACES

EXISTING CONCRETE WALL

EXISTING CONCRETE SLAB

EXISTING STUCCO
1. CONTRACTOR TO SCAN EXISTING CONCRETE PRIOR TO PRE-DRILLING FOR TAPCON SCREWS - ADJUST FRAMING LAYOUT AS REQUIRED TO AVOID CONFLICTS BETWEEN SCREW LOCATIONS.

2. PROVIDE (2) 3/16" DIAMETER x 1 3/4" TAPCON SCREWS AS SHOWN IN UNDERSIDE OF EXISTING SLAB THROUGH TRACK AT EACH FRAMING, AND AS DIRECTED BY THE ENGINEER IN THE FIELD.

3. PROVIDE (2) NEW RCKW5.5 & RCKW 5.5S (STIFFNER) BY SIMPSON STONG-TIE AT EACH EXTERIOR STUD AND HANGER - COAT SCREWS IN AN APPROVED 358SW14 HANGER/STUD (@ MAX. 1-0" O.C.), USING FASTENER PATTERN 4B FOR EPOXY ADHESIVE PRIOR TO INSTALLATION TO ENSURE ADEQUATE ATTACHMENT; CONSISTS OF TWO (2)-1/2" DIA. TYPE 316-S.S. STRONG BOLT 2 SCREW ENGAGEMENT WITH EXISTING CONCRETE LEVEL 2.

4. PLACE EXTERIOR SOFFIT BULKHEAD, EXT. INTERIOR SOFFIT BULKHEAD, AND EXTERIOR AND INTERIOR STUD SUPPORTS WITH 1 5/8" x #10 SELF-DRILLING CEMENT BOARD SCREWS AT 6" MAX SPACING.

5. CONSULT WITH ENGINEER IF SIGNIFICANT RAIL POST EMBED DAMAGE/DETERIORATION IS UNCOVERED DURING SLAB REPAIR WORK.

6. PROVIDE WATERPROOFING/FLASHING AT GLAZING NEW GLAZING (TYP.) ANCHOR IN ACCORDANCE WITH APPROVED NOA, PROVIDE (STRUCTURAL) PT WOOD BUCKING, AS/IF REQUIRED.

7. REMOVE AND REPLACE INT. CEILING, MAX. 3'-0" EX. INTERIOR SOFFIT CEILING (TYP.) TO REMAIN.

8. PROVIDE INTERIOR SUPPORTS WITH 1 5/8" x #10 SELF-DRILLING (TYPE BSD) SCREWS UNSLOTTED HEX WASHER HEAD 316 SS BY FASTENER CONNECTIONS.

9. PROVIDE FASTENING HANGERS/STUDS AT 24" MAX. SPACING AT JOIST TO TRACK.}

10. PROVIDE (2) 3/16" DIAMETER x 1 3/4" TAPCON SCREWS AS SHOWN IN UNDERSIDE OF EXISTING SLAB THROUGH TRACK AT EACH FRAMING, AND AS DIRECTED BY THE ENGINEER IN THE FIELD.

11. PROVIDE (2) NEW RCKW5.5 & RCKW 5.5S (STIFFNER) BY SIMPSON STONG-TIE AT EACH EXTERIOR STUD AND HANGER - COAT SCREWS IN AN APPROVED 358SW14 HANGER/STUD (@ MAX. 1-0" O.C.), USING FASTENER PATTERN 4B FOR EPOXY ADHESIVE PRIOR TO INSTALLATION TO ENSURE ADEQUATE ATTACHMENT; CONSISTS OF TWO (2)-1/2" DIA. TYPE 316-S.S. STRONG BOLT 2 SCREW ENGAGEMENT WITH EXISTING CONCRETE LEVEL 2.

12. PLACE EXTERIOR SOFFIT BULKHEAD, EXT. INTERIOR SOFFIT BULKHEAD, AND EXTERIOR AND INTERIOR STUD SUPPORTS WITH 1 5/8" x #10 SELF-DRILLING CEMENT BOARD SCREWS AT 6" MAX SPACING.

13. CONSULT WITH ENGINEER IF SIGNIFICANT RAIL POST EMBED DAMAGE/DETERIORATION IS UNCOVERED DURING SLAB REPAIR WORK.

14. PROVIDE WATERPROOFING/FLASHING AT GLAZING NEW GLAZING (TYP.) ANCHOR IN ACCORDANCE WITH APPROVED NOA, PROVIDE (STRUCTURAL) PT WOOD BUCKING, AS/IF REQUIRED.

15. REMOVE AND REPLACE INT. CEILING, MAX. 3'-0" EX. INTERIOR SOFFIT CEILING (TYP.) TO REMAIN.

16. PROVIDE INTERIOR SUPPORTS WITH 1 5/8" x #10 SELF-DRILLING (TYPE BSD) SCREWS UNSLOTTED HEX WASHER HEAD 316 SS BY FASTENER CONNECTIONS.
1. GENERAL NOTES

1. REMOVE AND DISPOSE EXISTING SLIDING GLASS DOOR, FRAME, AND BUCKING. REPAIR CONCRETE IF NECESSARY. PREPARE FLOOR SLAB TO MEET REQUIREMENTS OF ICRI CSP-7.0.0.10.

2. IF BUCKING AT HEADER OR JAMB REQUIRES LESS THAN 2X, ATTACH BUCKING WITH MINIMAL NUMBER OF FASTENERS TO ENSURE TIGHT BOND TO CONCRETE SUBSTRATE. INSTALL REQUIRED NUMBER OF CONCRETE FASTENERS FOR SLIDING GLASS DOOR FRAME THROUGH BUCKING TO ACHIEVE MINIMUM EMBEDMENT INTO SUBSTRATE REQUIRED BY MIAMI-DADE NOA. EMBEDMENT DEPTH DOES NOT EXCEED 2".

3. MIX SIKAQUICK 1000 IN ACCORDANCE WITH MANUFACTURER’S GUIDELINES. APPLY BONDCOAT OF SIKAQUICK 1000 TO PREPARED SSD FLOOR USING STIFF BRISTLE IMMEDIATELY POUR GROUT BED LEVEL. 1/2" MINIMUM. HEIGHT DICTATED BY SLIDING GLASS DOOR INSTALLER. IF GROUT BED EXCEEDS 2", EXTEND PER MANUFACTURER GUIDELINES. 3/4" MINIMUM GROUT BED HEIGHT. FINAL GROUT BED HEIGHT CANT BEAD SIKA 2C NS. ALUMINUM PAN TO BE 0.060" THICKNESS AND FACTORY COLOR MATCHED TO SLIDING GLASS DOOR FRAME. PAN TO HAVE END DAMS 1/4" BEAUTY BEAD 1/2" CANT BEAD SIKA 2C NS.

4. VERIFY SUBSTRATE IS 4% OR LESS MOISTURE CONTENT. APPLY SIKA EVERFLASH 102 TO COLUMNS AND CEILING CONSTRAINTING INTERIOR TO INSIDE LOCATIONS OF BUCK PLACEMENT.

5. ALLOW EVERFLASH 2 HOURS TO CURE. APPLY 3 RIBBONS OF SIKA 2C NS COMPLETELY TO FACE OF BUCK ATTACHING TO SUBSTRATE. BUCK TO BE SET FLUSH WITH OUTSIDE FACE OF SLIDING GLASS DOOR FRAME. INSTALL PRIMARY SEALANT. BUCK MAY NEED TO BE RIPPED DOWN IN VERTICAL AND OVERHEAD WATERPROOFING GENERAL PROCEDURE (REINFORCED CONCRETE SUBSTRATE):

6. APPLY SIKA FASTENING SCHEDULE TO BUCKING, BUCKING TO BE KILN DRIED PRESSURE TREATED #2 SOUTHERN YELLOW PINE 4% OR LESS MOISTURE CONTENT.

7. REMOVE ALL DUST AND DEBRIS FROM SUBSTRATE. CUT BACK STUCCO AT JAMBS AND HEADER MINIMAL AMOUNT TO ACCOUNT FOR NEW BUCKING LINES. APPLY SIKA EVERFLASH 102 OR SIKA 2C NS TO OUTSIDE FACE AND SIDE FACING SLIDING GLASS DOOR FRAME.

8. APPLY SIKA SIKALASTIC 735AL TRAFFIC COATING TO BUCK PLACEMENT, BRAKE METAL STUCCO STOP ADHERED WITH SEALANT TO BUCK AND SGD FRAME (3/4" MINIMUM)

9. APPLY SIKAQUICK 1000 BONDCOAT TO PREPARED SSD FLOOR USING STIFF BRISTLE IMMEDIATELY POUR GROUT BED LEVEL. 1/2" MINIMUM. HEIGHT DICTATED BY SLIDING GLASS DOOR INSTALLER. IF GROUT BED EXCEEDS 2", EXTEND PER MANUFACTURER GUIDELINES. 3/4" MINIMUM GROUT BED HEIGHT. FINAL GROUT BED HEIGHT CANT BEAD SIKA 2C NS.

10. REMOVE AND DISPOSE EXISTING SLIDING GLASS DOOR, FRAME, AND BUCKING. REPAIR CONCRETE IF NECESSARY. PREPARE FLOOR SLAB TO MEET REQUIREMENTS OF ICRI CSP-7.0.0.10.

11. IF BUCKING AT HEADER OR JAMB IS EQUAL TO 2X OR GREATER, ATTACH BUCKING (SEE FASTENING SCHEDULE THIS SHEET) USING 1/4" ELCO CRETEFLEX SS4 FASTENERS AT 1" CONCRETE EDGE DISTANCE AND 1/2" BUCKING SPACING. BUCKING TO BE KILN DRIED PRESSURE TREATED #2 SOUTHERN YELLOW PINE 4% OR LESS MOISTURE CONTENT.

12. REMOVE ALL DUST AND DEBRIS FROM SUBSTRATE. CUT BACK STUCCO AT JAMBS AND HEADER MINIMAL AMOUNT TO ACCOUNT FOR NEW BUCKING LINES. APPLY SIKA EVERFLASH 102 OR SIKA 2C NS TO OUTSIDE FACE AND SIDE FACING SLIDING GLASS DOOR FRAME.

13. APPLY SIKA SIKALASTIC 735AL TRAFFIC COATING TO BUCK PLACEMENT, BRAKE METAL STUCCO STOP ADHERED WITH SEALANT TO BUCK AND SGD FRAME (3/4" MINIMUM)

14. APPLY SIKAQUICK 1000 BONDCOAT TO PREPARED SSD FLOOR USING STIFF BRISTLE IMMEDIATELY POUR GROUT BED LEVEL. 1/2" MINIMUM. HEIGHT DICTATED BY SLIDING GLASS DOOR INSTALLER. IF GROUT BED EXCEEDS 2", EXTEND PER MANUFACTURER GUIDELINES. 3/4" MINIMUM GROUT BED HEIGHT. FINAL GROUT BED HEIGHT CANT BEAD SIKA 2C NS.

15. REMOVE AND DISPOSE EXISTING SLIDING GLASS DOOR, FRAME, AND BUCKING. REPAIR CONCRETE IF NECESSARY. PREPARE FLOOR SLAB TO MEET REQUIREMENTS OF ICRI CSP-7.0.0.10.

16. IF BUCKING AT HEADER OR JAMB IS EQUAL TO 2X OR GREATER, ATTACH BUCKING (SEE FASTENING SCHEDULE THIS SHEET) USING 1/4" ELCO CRETEFLEX SS4 FASTENERS AT 1" CONCRETE EDGE DISTANCE AND 1/2" BUCKING SPACING. BUCKING TO BE KILN DRIED PRESSURE TREATED #2 SOUTHERN YELLOW PINE 4% OR LESS MOISTURE CONTENT.

17. REMOVE ALL DUST AND DEBRIS FROM SUBSTRATE. CUT BACK STUCCO AT JAMBS AND HEADER MINIMAL AMOUNT TO ACCOUNT FOR NEW BUCKING LINES. APPLY SIKA EVERFLASH 102 OR SIKA 2C NS TO OUTSIDE FACE AND SIDE FACING SLIDING GLASS DOOR FRAME.

18. APPLY SIKA SIKALASTIC 735AL TRAFFIC COATING TO BUCK PLACEMENT, BRAKE METAL STUCCO STOP ADHERED WITH SEALANT TO BUCK AND SGD FRAME (3/4" MINIMUM)

19. APPLY SIKAQUICK 1000 BONDCOAT TO PREPARED SSD FLOOR USING STIFF BRISTLE IMMEDIATELY POUR GROUT BED LEVEL. 1/2" MINIMUM. HEIGHT DICTATED BY SLIDING GLASS DOOR INSTALLER. IF GROUT BED EXCEEDS 2", EXTEND PER MANUFACTURER GUIDELINES. 3/4" MINIMUM GROUT BED HEIGHT. FINAL GROUT BED HEIGHT CANT BEAD SIKA 2C NS.
SHORING REQUIREMENTS FOR CONCRETE REPAIRS

- VERIFY IN FIELD
- EXISTING STRUCTURE VARIES
- FILL ALL HOLES WITH CONCRETE
- SCREWS WITH MINIMUM 1"
- EMBEDMENT, SAME DIAMETER AS SHORING PLATE HOLES (TYP TOP & BOTTOM)

- IT IS THE RESPONSIBILITY OF THE SHORING ENGINEER TO EVALUATE THE BEARING CAPACITY FOR SHORING AND SPECIFY CRIBBING OR OTHER MEANS TO PROVIDE ADEQUATE BEARING

- HEAVY DUTY CRANE CRIBBING MAT OR OTHER LOAD DISTRIBUTION STRUCTURE WHERE REQUIRED BY SHORING ENGINEER DESIGN

- BOLT/SCREW BEAMS TO EXISTING STRUCTURE IF REQUIRED BY SHORING ENGINEER

- ALUMINUM OR CARBON STEEL BEAMS PER SHORING ENGINEER DESIGN

- THESE DETAILS ARE CONCEPTUAL ONLY. IT IS THE SOLE RESPONSIBILITY OF THE DELEGATED SHORING ENGINEER TO VERIFY CAPACITIES OF BEAMS, SLABS, ETC IN ORDER TO DETERMINE SHORING SYSTEM TYPE / CONFIGURATION AND SPACING.

- UNLESS OTHERWISE AGREED UPON, THE SHORING ENGINEER SHALL BE RESPONSIBLE FOR THE INSPECTION OF SHORING INSTALLATION.
1. CONTRACTOR TO FIELD VERIFY EXISTING MASONRY OPENING SIZES AT EACH DOOR OPENING.

2. CONTRACTOR SHALL REPLACE EXTERIOR FIRE DOORS NOT ENGINEERED ON THESE PLANS WITH SERIES TRIO SINGLE DOOR WITH LIGHT BY CECO DOOR PRODUCTS A DIVISION OF ASSA ABLOY DOOR GROUP, INC. SEE CECO DOOR PRODUCTS DRAWING No 20-34881, SHEETS 1-16 DATED 12/21/2020 FOR ADDITIONAL INFORMATION AND REQUIREMENTS. SEE PLANS FOR DOOR LOCATIONS.

3. ALL METAL TO MASONRY/CONCRETE/STUCCO SURFACES SHALL BE SEALED WITH AN APPROVED URETHANE SEALANT.

4. FIRE DOOR JAMBS SHALL CONTAIN 16" X 8" CONCRETE FILLED BLOCKS. IF NO CONCRETE FILLED BLOCKS EXISTS, CONTRACTOR SHALL CUT EXISTING BLOCK AND ADD NEW CONCRETE FILL (Fc' = 3000 PSI).

5. CONTRACTOR TO COMPLETE THIS WORK IN SUCH A WAY TO ASSURE THAT THE PRESENT LEVEL OF LIFE-SAFETY INCLUDING THE MEANS OF EGRESS WILL REMAIN ACCESSIBLE AT ALL LEVELS. THE REMOVAL AND INSTALLATION OF A FIRE DOOR MUST TAKE PLACE ON THE SAME DAY, AND WORK SHALL BE IN ONLY ONE STAIR TOWER AT A TIME. ONE STAIR TOWER SHALL BE COMPLETELY ACCESSIBLE IN CASE OF AN EMERGENCY.

6. ALL NEW FIRE-RATED DOORS SHALL BE SECURED TO BLOCK WALL JAMBS AND CONCRETE FLOOR SLABS WITH 3/8" DIAMETER HILTI KWIK BOLT 3 EXPANSION ANCHOR WITH 1 1/2" MINIMUM EMBEDMENT AND 4" MINIMUM EDGE DISTANCE. KWIK BOLTS EXCLUDES STUCCO, FOAM, BLOCK AND OTHER WALL FINISHES. KWIK BOLTS NO. SHEET 3. SEE CECO DOOR PRODUCTS DRAWINGS FOR ADDITIONAL REQUIREMENTS.

7. USE 1/4" TAPCONS AT SILLS. TAPCONS SHALL BE 6" MINIMUM AT EVERY CORNER AND SPACED AT 12" o/c.

8. THE PRESSURES SHOWN IN THE TABLE ABOVE ARE LRFD LOADS FROM ASCE 7-16 FOR COMPONENTS AND CLADDING BASED ON VARIOUS EFFECTIVE AREAS. THEREFORE, THE LOADS FROM THE TABLE ABOVE MUST MULTIPLIED BY A FACTOR OF 0.6 TO CORRELATE TO THE ASD DESIGN PRESSURE RATING NOTED ON DAYBAR INDUSTRIES LTD DRAWING No 20-156 SHEET 3.

9. THE DOOR IN QUESTION APPROXIMATELY 6'-8" BY 3'-4" FOR A TOTAL SQUARE FOOTAGE OF 25 SQUARE FEET. BASED ON TABLE 30.6-1 IN ASCE 7-10, THE AMOUNT OF C&C LOADING DECREASES AS A FUNCTION OF AREA UNDER CONSIDERATION AND THIS TABLE RETURNS A VALUE CALLED 'EXTERNAL PRESSURE COEFFICIENT, GCp' WHICH IS USED IN EQUATION 30.5-1 CONTROLLING LINE IN THIS CASE CORRESPONDS TO DESIGN ZONE 4. USING TABLE 30.5-1:

 \[
 \text{q_net} = 99.8 \times (0.88 + 0.18) \times 0.6 = 63.5 \text{ PSF}
 \]

 OR, IN NUMBERS

 \[
 \text{q_net} = 99.8 \times 1.06 \times 0.6 = 63.5 \text{ PSF}
 \]

 USING EQUATION 30.5-1: THE NET PRESSURE CAN BE FORMULATED TO BE:

 \[
 \text{NET PRESSURE} = \text{PEAK} \times (\text{GCp} + \text{GCpi}) \times \text{ASD FACTOR}
 \]

 WHERE:

 - \(\text{PEAK} = 99.8 \text{ PSF} \)
 - \(\text{GCp} = 0.88 \)
 - \(\text{GCpi} = 0.18 \)
 - \(\text{ASD FACTOR} = 0.6 \)

 \[
 \text{NET PRESSURE} = 99.8 \times (0.88 + 0.18) \times 0.6 = 63.5 \text{ PSF}
 \]

 \[
 \text{NET PRESSURE} = 99.8 \times 1.06 \times 0.6 = 63.5 \text{ PSF}
 \]

 Therefore, the net pressure is 63.5 PSF. Since the peak pressure is 99.8 PSF and the ASD factor is 0.6, the net pressure is 63.5 PSF.

 - CONDITION 1 - PERPENDICULAR TO DOOR
 - CONDITION 2 - PARALLEL TO DOOR
LIGHT FIXTURES TO BE REPLACED AFTER WALL NEW WALL CAP RECONSTRUCTION WORK IS COMPLETE.

SOUTHWALL REPAIR

NEW CONCRETE CAP TO INCLUDE INTERMEDIATE COLUMN LOCATIONS

EXISTING SAW-CUT AND REMOVE EXISTING STUCCO AS REQUIRED TO PERFORM THE WORK.

NEW CONCRETE CAP TO INCLUDE INTERMEDIATE COLUMNS IN WALL CONSTRUCTION.

SOUTH PERIMETER WALL REPAIR

EXISTING FRAMED WALL CAP, PERFORM NECESSARY CONCRETE DEMO, AND CAST A NEW CONCRETE CAP REINFORCED WITH 2-#4 BARS CONTINUED & #3 DOWELS WITH 3" EMBEDMENT STAGGERED @ 2'-0" O.C.

EXISTING COLUMN(s) BEYOND SAW-CUT AND REMOVE EXISTING STUCCO AS REQUIRED TO PERFORM THE WORK.

EXISTING STUCCO AS REQUIRED TO PERFORM THE WORK.

LIGHT FIXTURES TO BE REPLACED AFTER WALL NEW WALL CAP RECONSTRUCTION WORK IS COMPLETE.

EXISTING FRAMED WALL CAP, PERFORM NECESSARY CONCRETE DEMO, AND CAST A NEW CONCRETE CAP REINFORCED WITH 2-#4 BARS CONTINUED & #3 DOWELS WITH 3" EMBEDMENT STAGGERED @ 2'-0" O.C.

EXISTING COLUMN(s) BEYOND SAW-CUT AND REMOVE EXISTING STUCCO AS REQUIRED TO PERFORM THE WORK.
1. **CONCRETE SUBSTRATE FOR APPLICATION OF NEW WATERPROOFING MEMBRANES:**
 - Grind off any existing surfaces and shot blast/water blast to achieve concrete surface profile as required by the new coating manufacturer.

2. **FLOOD RESIDENTIAL BALCONY DECKS AND OUTLINE AREAS OF PONDING.**

3. **APPLY SIKALASTIC 710/715 MEMBRANE TO TOP SIDE OF DECK IN ACCORDANCE WITH MIAMI-DADE NOA 16-0203.02 SYSTEM TYPE A(1) FOR WATERPROOFING AS THE FINISH OR SYSTEM TYPE A(4) FOR TILE AS THE FINISH.**
 - Where applying membrane over original concrete use Sika FTP Primer and Xylene wipe before application of membrane.

4. **WHILE APPLYING SYSTEM TO TOP SIDE OF DECK, CARRY SYSTEM TO OUTSIDE MATCH FACADE DESIGN.**
 - Fabricate joint to outside match facade design. Provide 4" vertical termination of waterproofing as directed by engineer, or typical vertical termination of waterproofing.

5. **REINFORCED CONCRETE CRACKS ARE NOT TO BE BEADED WITH SIKAFLEX SEALANT (1/2"-1/2" DEEP).**

6. **DETAILS:**
 - **CRACK DETAIL:**
 - Provide a single layer of Sika flex sealant at crack.
 - **DRAIN DETAIL:**
 - Several layers of Sika flex sealant at perimeter of drain.
 - **TERMINATION DETAIL:**
 - Provide 4" detail coat at cornices.

7. **NOTE:**
 - Care should be taken to avoid applying the primer onto the sealant.

SILVEX WATERPROOFING GENERAL INSTRUCTIONS:

1. At exterior and interior surfaces, face of all exterior deck, properly prime the surface and allow to cure before application of membrane.

2. Grind off any existing surfaces and shot blast/water blast to achieve concrete surface profile as required by the new coating manufacturer.

3. Apply membrane over existing concrete using Sika FTP Primer and Xylene wipe before application of membrane.

4. Where applying membrane over original concrete use Sika FTP Primer and Xylene wipe before application of membrane.

5. Grind off any existing surfaces and shot blast/water blast to achieve concrete surface profile as required by the new coating manufacturer.

6. Apply membrane over existing concrete using Sika FTP Primer and Xylene wipe before application of membrane.

7. Where applying membrane over original concrete use Sika FTP Primer and Xylene wipe before application of membrane.

TILE DETAIL:

- For a topcoat followed by the thin set, broadcast 16/20 mesh crack angular sand into the wet topcoat until refusal. After cure, remove excess aggregate before proceeding with the thin set.

REPAIR AND RESTORATION LICENSE:

- License: 89035
- Expires: 02/28/23

PROJECT NO.:

- TBM-1
CCW-500 REINFORCING FABRIC
CCW-500R @ 90 MILS
CCW-CONTACT ADHESIVE
c 2012 CARLISLE CORPORATION

CCW-500R @ 125 MILS
DOUBLE DRAIN
SURE-SEAL LAP-SEALANT (WITH PRIMER)
FLASHING (IN CONJUNCTION CUT-OFF MASTIC.
ELASTOFORM FLASHING OR PRESSURE-SENSITIVE UNCURED

NOTES:
1. METAL SCUPPER BOX MUST HAVE CLEAN FLANGE. APPLY SURE-SEAL BONDING ADHESIVE
2. WATER CUT-OFF MASTIC MUST BE 90 MILS OF HOT CCW-500 OR 9900 CCW-711-90 OR CCW-UNCURED NEOPRENE FLASHING.
3. METAL SCUPPER FLANGE ON WALL MUST BE TOTALLY COVERED BY UNCURED ELASTOFORM FLASHING.
4. UNCURED ELASTOFORM FLASHING MUST OVERLAP WALL FLASHING 3" (8 cm) MIN.
5. A MIN. 2" (5 cm) FLASHING SPLICE IS REQUIRED PAST THE NAIL HEAD ON THE METAL FLANGE OF THE SCUPPER.
6. INSTALL CCW-711-90 FLASHING, IN A SINGLE PIECE, UNDER FLANGE AND 6" ONTO DECK.
7. APPLY CCW-500R HOT APPLIED SEALANT IN A MINIMUM OF 6" AND COVER WITH A LAYER OF WASHED #57 GRAVEL CCW-550 PRIMER OR 1/4"X1/4" SAW CUT

NOTE: IT SHALL BE THE RESPONSIBILITY OF THE CONTRACTOR TO ENGAGE THE MANUFACTURER TO VERIFY THE SUITABILITY OF ALL DETAILS TO BE USED ON THE JOB. THE CONTRACTOR SHALL SUBMIT ALL ADDITIONAL DETAILS THAT THE MANUFACTURER REQUIRES TO COMPLETE THE WORK.

Scale: 1"=2'-0"
Project No.: 18217
Sheet No.: WP-5
Date: 04/02/2021
Morabito Consultants
Structural Engineers | Remediation & Parking Consultants
206 Via Condado Way | Palm Beach Gardens, FL 33418
© Copyright Morabito Consultants, Inc.
NOTE: IT SHALL BE THE RESPONSIBILITY OF THE CONTRACTOR TO ENGAGE THE MANUFACTURER TO VERIFY THE SUITABILITY OF ALL DETAILS TO BE USED ON THE JOB. THE CONTRACTOR IS ADVISED TO SUBMIT ADDITIONAL DETAILS THAT THE MANUFACTURER REQUIRES TO COMPLETE THE WORK.
NOTE: ALL EXISTING EQUIPMENT IS TO REMAIN UNLESS OTHERWISE NOTED.

EXISTING SERVICE MAINS WILL BE REMOVED.
SERVICE MAINS WILL BE COMPILED AND RELABELLED ACCORDINGLY UNDER NEW WORK.

REFER TO ELECTRICAL RISER DIAGRAM.

NOTE: FIRE PUMP INSTALLATION TO COMPLY WITH NEC 2017 ART 695 AND NFPA 20.
<table>
<thead>
<tr>
<th>No.</th>
<th>Type</th>
<th>Description</th>
<th>Quantity</th>
<th>Unit</th>
<th>Size</th>
<th>Color</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Panel</td>
<td>Dist. Panel</td>
<td>10</td>
<td>Unit</td>
<td>5x7</td>
<td>Blue</td>
<td>Tested</td>
</tr>
<tr>
<td>2</td>
<td>Panel</td>
<td>Panel-B</td>
<td>8</td>
<td>Unit</td>
<td>6x8</td>
<td>Red</td>
<td>Verified</td>
</tr>
<tr>
<td>3</td>
<td>Panel</td>
<td>Panel-C</td>
<td>12</td>
<td>Unit</td>
<td>7x9</td>
<td>Green</td>
<td>Inspection</td>
</tr>
<tr>
<td>4</td>
<td>Panel</td>
<td>Panel-D</td>
<td>6</td>
<td>Unit</td>
<td>4x6</td>
<td>Brown</td>
<td>As shown</td>
</tr>
</tbody>
</table>

Additional Panel Notes:
- Contractor to trace all circuits in all panelboards and produce new identification labels.
GENERAL NOTES

1. FIRE PROTECTION MATERIALS, DESIGNS & HYDRAULIC CALCULATIONS SHALL COMPLY WITH APPLICABLE CODES AND STANDARDS. ALL DRAWINGS ILLUSTRATING FIRE PROTECTION SHALL COMPLY TO NFPA 13, 14, 20, 24, THE FLORIDA STATE FIRE PREVENTION CODE, AND THE AUTHORITY HAVING JURISDICTION (AHJ) MINIMUM REQUIREMENTS FOR INSTALLING FIRE SPRINKLER SYSTEM. REFER TO APPLICABLE CODES (THIS SHEET) FOR ANY SPECIAL CONDITIONS AND/OR ADDITIONAL REQUIREMENTS THAT MAY BE NEEDED FOR FIRE SPRINKLER SYSTEMS.

2. CONTRACTOR SUBMITTED PACKAGE SHALL BE SUBMITTED, COORDINATED AND APPROVED BY THE ARCHITECT/ENGINEER OF RECORD, PRIOR TO SUBMITTING SHOP DRAWINGS, HYDRAULIC CALCULATIONS, & EQUIPMENT DATA SHEETS TO THE AHJ FOR FINAL APPROVAL PERMITTING PURPOSES.

3. AFTER AS BUILT REVISIIONS ARE COMPLETE ON THE DESIGN OF WORK, THE CONTRACTOR SHALL SUBMIT CONTRACTOR'S SUBMITTAL PACKAGE (INCLUDING SUBMISSION OF AS BUILT DRAWINGS) TO THE ARCHITECT/ENGINEER OF RECORD FOR final APPROVAL TO REVIEW AND SUBMIT TO THE AHJ FOR Final APPROVAL PERMITTING PURPOSES.

4. FIRE SPRINKLER CONTRACTOR SHALL SUBMIT SHOP DRAWINGS FOR APPROVAL AND PERMITTING.

5. CONTRACTOR SHALL SUBMIT SHOP DRAWINGS FOR APPROVAL AND PERMITTING.

6. PIPING IN AREAS WITH EXPOSED STRUCTURE SHALL BE INSTALLED AS HIGH AS POSSIBLE TO ALLOW THE OWNER MAXIMUM USE OF THE SPACE.

7. CONTRACTOR SHALL SLEEVE AND/OR FIRESTOP ALL PENETRATIONS THROUGH RATED WALLS, CEILINGS AND FLOORS WITH UL/LISTED ASSEMBLIES. FIRESTOP ASSEMBLIES SHALL BE EQUAL OR EXCEED THE RATING OF THE WALL, CEILING OR FLOOR.

APPLICABLE CODES AND STANDARDS

1. FLORIDA ADMINISTRATIVE CODE 61G15-32.003 A-M (LATEST REVISION)
2. FLORIDA BUILDING CODE
3. NFPA 1
4. NFPA 13 (2013 EDITION)
5. NFPA 14 (2013 EDITION)
6. NFPA 24 (2013 EDITION)

SCOPE OF WORK

PROJECT CONSISTS IN REPLACING THE EXISTING FIRE PUMP WITH A NEW ELECTRIC FIRE PUMP THAT MEETS NEW CODE REQUIREMENTS. NEW PUMP SHALL BE 750 GPM @ 130 PSI WITH TRANSFER SWITCH. VOLTAGE SHALL BE 208 3 PHASE. CONTRACTOR SHALL SUBMIT FIRE PUMP AND CONTROLLERS_SPECS PRIOR TO SUBMITTAL. INSTALL NEW PRESSURE REDUCING VALVES WHERE PRESSURE EXCEEDS 175 PSI. INSTALL NEW BACKFLOW PREVENTER TO MEET NEW CODE REQUIREMENTS.

FIRE SPRINKLER CONTRACTOR SHALL SUBMIT SHOP DRAWINGS FOR APPROVAL AND PERMITTING.
OVERALL HEIGHT MAY BE GREATER DEPENDING ON MOTOR, ADAPTER, AND/OR HINGE BASE.

DUCT DIMENSIONS ARE LARGEST POSSIBLE DUCT TO FIT THROUGH CURB.

CONSULT SYSTEM DESIGN ENGINEER FOR RECOMMENDED DUCT SIZE.
1. Existing building framing and conditions reflected on plans are based on existing drawings prepared by William M. Friedman & Associates, Architects, Inc. and Breiterman Juardino & Associates, dated 08-22-1979 and a limited field investigation conducted by Morabito Consultants. Contractor shall verify all existing conditions and contact Morabito Consultants prior to construction if conditions vary from what is shown on plan.

2. Existing structure consists of cast-in-place concrete two-way flat plate floors resting on supporting reinforced concrete columns over a framed concrete slab on grade supported by pile caps.

3. Existing conditions are shown half-tone.

4. The repair contractor shall submit a construction schedule with phasing and traffic control plans to owner and engineer for review and approval prior to commencement of work.

5. The existing structure is shown in half-tone.

6. The repair contractor shall submit a complete as-built record to the owner before the project is declared completed.
1. Existing building framing and conditions indicated on plan are based on existing drawings prepared by William M. Friedman & Associates, Architects, Inc. and Breiterman Juarado & Associates, dated 08-22-1979 and a limited field investigation conducted by Morabito Consultants. Contractor shall verify all existing conditions and contact Morabito Consultants prior to construction if conditions vary from what is shown on plan.

Existing structure consists of cast-in-place concrete two-way flat plate elevated floor slabs bearing on cast-in-place concrete columns over a framed concrete slab on grade supported by pile caps.

Existing elevation top of structural slab varies.

Existing conditions are shown half-tone.

5. The repair contractor shall submit a construction schedule with phasing and traffic control plans to owner and engineer for review and approval prior to commencement of work.
BASEMENT PARKING PLAN - GAS

EXISTING STANDARD PARKING THIS LEVEL = 120 SPACES
EXISTING PARKING THIS LEVEL = 120 SPACES

MAINTENANCE ROOM
ELEV. STAIRS
RAMP UP
STAIRS

POOL
POOL EQUIPMENT
JACUZZI

NATURAL GAS
BASEMENT PLAN
CONSULTING ENGINEERS
241 N.W. SOUTH RIVER DRIVE
MIAMI, FL 33128
HENRY VIDAL, P.E., PE #56204
CERTIFICATION OF AUTHORIZATION #9056
PHONE: (305) 571-1860 FAX: (305)571-1861
INFO@VIDALENGINEERING.COM
VIDALENGINEERING.COM
H.VIDAL & ASSOCIATES

Sheet No: P-1A
Sheet Title: BASEMENT PARKING PLAN - GAS
Scale: 3/32"=1'-0"
NOTE: ALL BASE INFORMATION INDICATES EXISTING CONDITIONS FROM SURVEY BY J. BONFILL & ASSOC. 8/7/2020
NOTE: INSTALL SPECIFIED SOIL TO 18" DEPTH, 30" DEPTH SURROUNDING TREE ROOT BALLS.
IRRIGATION NOTES AND DETAILS

INSTALLATION NOTES AND DETAILS, AND SPECIFICATIONS SHALL BE FOLLOWED
AND TO VISIT THE SITE TO BECOME FAMILIAR WITH EXISTING CONDITIONS.
IRRIGATION SHALL BE INSTALLED AND MAINTAINED TO MINIMIZE UNDESIRABLE
SENSOR SHALL BE INSTALLED TO CONSERVE WATER.
THIS IRRIGATION HAS BEEN DESIGNED AS A TYPICAL BLOCK VALVE TYPE
BACKFLOW PREVENTION SHALL BE EVALUATED TO DETERMINE IF EXISTING
PARKING GARAGE WALL. THIS LINE IS SUPPLIED FROM A 2" CITY WATER METER
FROM BASE PLANS SCALED AT 1" = 16'.

THIS IRRIGATION PLAN SHALL BE USED AS A GUIDE ONLY. CONTRACTOR
CONTRACTOR SHALL REFER TO THIS PLAN TO COORDINATE SPRINKLER
LOCATIONS ARE SCHEMATIC ONLY AND SHALL BE ADJUSTED FOR
LOCAL CODES.

AUTOMATIC PRESSURE REQUIRED

AUTOMATIC IRRIGATION SYSTEM
IRRIGATION NOTES & SPECIFICATIONS

AND BUBBLERS SHALL BE INSTALLED IN NARROW LANDSCAPED AREAS.
SPRINKLERS SHALL BE RAINBIRD 1800 SERIES. TWELVE INCH POP UP TYPE SHALL
SHALL BE TO ELIMINATE OVERTHROW ONTO SIDEWALKS.
LANDSCAPING, SITE LIGHTING, PREVAILING WIND, MOUNDING, ETC., TO ENSURE
SPRINKLER LOCATIONS ARE SCHEMATIC ONLY AND SHALL BE ADJUSTED FOR
LOCAL CODES.

PRESSURE DISTRIBUTION

ALL PIPE RISERS THROUGH THE SLAB SHALL BE SCH 40 PVC WHICH SHALL BE
INSTALLED IN ACCORDANCE WITH LOCAL CODES, SECTION "F"
SYSTEMS OF EXISTING TREES AND PALMS.
PIPE ROUTING IS SCHEMATIC ONLY AND SHALL BE ADJUSTED FOR ON SITE
LOCATION SHALL BE SELECTED ON SITE.
THE RAIN SENSOR SHALL BE INSTALLED IN ACCORDANCE WITH MANUFACTURER'S
INSTRUCTIONS. LOCATION SHALL BE SELECTED ON SITE.

PVC WIRE CONDUIT, AND (3) BURIED TO A MINIMUM DEPTH OF 15".
(1) INSTALLED IN ACCORDANCE WITH LOCAL CODES, (2) INSTALLED IN SCH 40
VALVES SHALL BE #14 AWG THHN TYPE WHICH SHALL BE:
CONTROL LINES FROM THE AUTOMATIC CONTROLLER TO IN-LINE AUTOMATIC
CONTROLLER SHALL BE INSTALLED IN ACCORDANCE WITH LOCAL CODES
AND MANUFACTURER'S INSTRUCTIONS. PROPER GROUNDING EQUIPMENT
shall be provided to private drainage.
THIS PUMP SHAL BE INSTALLED IN ACCORDANCE WITH LOCAL CODES, SECTION "F"
SCH 40 PVC WIRE CONDUIT.
CONTROL WIRES IN MAIN LINE

SHRUB TYPE AND BUBBLERS SHALL BE INSTALLED ON 1/2" SCH 40 PVC RISERS.
SHRUB MASS MAINTAINED TO A MAX. HEIGHT OF 18".
MASS MAINTAINED TO A MIN. HEIGHT
JOINT LOCATED IN PLANT MASS
JOINT WITH RISER LOCATED IN PLANT
Fittings (TYP)
3/4" SCH 40 PVC SHRUB RISER
PAINTED FLAT BLACK ABOVE GRADE
FITTING (TYP)
SCH 40 PVC
4"

CONTROL SYSTEM

WATER DISTRIBUTION

CONTROL SYSTEM SHALL BE A RAINBIRD ELECTRIC TYPE,
ONE 8 STATION CONTROLLER SHALL ACTIVATE UNLESS VALUE
A PUMP SENSOR INSTALLED TO CONSIDER BOOSTING.
CONTROLLER SHALL BE INSTALLED IN ACCORDANCE WITH LOCAL CODES
FOR MORE INSTRUCTIONS CONTACT MANUFACTURER.
AUTOMATIC VALVES, AUTOMATIC SPRINKLERS, AUTOMATIC CONTROLLERS,
AUTOMATIC VALVE BOXES, AUTOMATIC subirrigation systems, AUTOMATIC
SAVES WATER.
AUTOMATIC VALVE BOXES,
AUTOMATIC VALES,
AUTOMATIC VALVES,
AUTOMATIC VALES,
AUTOMATIC VALVES,
AUTOMATIC VALVES,
AUTOMATIC VALES,
NOTE: PROPOSED LIGHTS SHALL BE 'TURTLE FRIENDLY' AND SUBJECT TO APPROVAL BY STATE REGULATING AUTHORITY.
Temp valet parking for displaced cars from garage / deck as repairs are made to garage area. Alt: Staging / parking area for restoration crew. Day time use only.
BASEMENT PARKING PLAN - GAS
FIRST FLOOR PARKING PLAN - GAS

P-2A